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1. In the literature on spline interpolation, the interpolatory conditions
are generally imposed at the given mesh-points (joints). In a recent paper,
Subotin [5] has considered the existence and convergence of even degree
splines with equidistant mesh-points which interpolate to given data at the
mid-points of the mesh intervals. Some of these results have been treated
earlier by Schoenberg [3] from a different point of view. The object of the
present paper is to investigate the convergence properties of periodic cubic
splines which interpolate to a given function at one or more inner points of the
given mesh intervals. It is easy to see that if the number of interpolatory
conditions in each mesh interval is more than one (as in our Theorem 2), the
deficiency of the spline (see [1], p. 7) increases. On the other hand, the increase
of deficiency of the spline (which is equivalent to the decrease of differenti
ability at the joints) is compensated by the increase in smoothness at the
points of interpolation (in fact, we have three non-trivial continuous deriva
tives at the interpolation points).

Error bounds for interpolatory splines have been considered under various
assumptions on the approximand by Birkhoff and de Boor [2] (see also [6],
[4]). Here we obtain error bounds for cubic splines which interpolate at one
point in each mesh interval (Section 2), and at two points in each mesh interval
(Section 3). For the sake of simplicity, we consider only equidistant joints in
Section 2. In Section 3, this restriction is not needed.

2. Let
o= Xo < X I < ... < X n = I (2.1)

be any subdivision of [0,1]. Set hi = XI - XI-I' and for a given A, 0 < A';; 1,
denote tl = XI_I + Mi> 1.;; i.;; n. For any given n-tuple (0(1,0(2'" ',O(n) of real
numbers, there exists a unique I-periodic cubic spline ep(x) E C 2 [0, 1] with
joints xo, XI' ••. , Xn such that ep(tl) = O(il 1 .;; i.;; n. The existence and uniqueness
of such a spline can be proved by the methods of Ahlberg, Nilson and Walsh
[1].

If the O(/s are the values of a I-periodic function!(x), we can formulate the
following convergence theorem for equidistant joints.
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THEOREM 1. Let f(x) E C2[O, 1] be I-periodic, and let cP(x) E C2[O, 1] be the
I-periodic cubic spline with joints XI = i!n, satisfying

cPe+:- I
) =fe+:- I

), i= I,2, ...,n, (2.2)

where 0 < ,\ < t or ! < ,\ < 1. If wi8) is the modulus of continuity of j"(x),
then we have

m;x !eP"(x) - j"(x)! < 15w2 (1). (2.3)

Remark. An analogous result where interpolation takes place between the
joints rather than at the joints is due to Subotin [5]. Similar results from a
different point of view go back much earlier and are due to Schoenberg [3].

An immediate consequence of (2.3) is the following:

COROLLARY. Under the conditions ofTheorem I, we have for r = 0, I,

'I)m;x Wr)(x) - f<r)(x) I< 15nr-2W2 (~ . (2.4)

Proof It is easy to verify that for any cubic polynomial p(x) in an interval
[a, a +h], and for any'\, 0 <,\ < 1, the following identities hold:

(Ah)2 (,\) ,\3 h2
p(a) + '\hp'(a) + -2- 1 - 3 p"(a) + -"6p"(a + h) - p(a + Ah) == O.

(1-,\)2h2 2+,\
p(a+h) - (1 - ,\) hp'(a+h) + 2 . -3-p"(a +h)

(1 - ,\)3 h2

+ p"(a) - p(a + Ah) == O.
6

Setting

(2.5)

(2.6)

-f(i +,\ -I)
0(1- --n-'

ept' = cP' (~),

we have on using (2.5) with

i-I
a=--,

n

and (2.6) with
i-2

a=-,
n

0< i<n,
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A
3

A A
2

(A )cPi-l = - 6n2 M i - ncP;-1 +2n2 .3 - 1 Mi- 1+ !Xi

= _ (1 ~;)3 M i- 2 + (l : A) cP;-1 _ (~~;)2C;~) M i - 1 + !Xi-I;

so that for; = 1,2, ... , n we have

, _ (1 - A)3 2A3 - 3A2 - 3A + 2 A3 2
ncPi-l - -6-Mi-2 + 6 M i- 1 - (;Mi + (!Xi - !Xi-l)n .(2.7)

Since cP"(x) is linear between joints, we clearly have

n(cPk' - cP~-I) = !(Mk+ Mk- 1)·

Hence (2.7), with; = k and; = k + 1, yields the following four-term relations
for the M/s:

(1 - A)3 (2 A3 - 2A2
) (1 A(l + A- A2») A3

6 Mk- 2+ 3+ 2 Mk- 1+ 6+ 2 Mk+ 6 Mk+1

= 2[tk-l, tk, tk+1;!], k = 1, 2, ..., n, (2.8)

where [a,b,c;Jl denotes the usual divided difference ofJat a, b, c,

;+A-l
ti = , and Mi=Mn+in

for all i.
Setting

!k" =1" (~) and Ak = M k -f/',

we have from (2.8) after some simplification, for k = 1,2, ..., n

(1 - A)3 (2 A3 - 2A2
) (1 A(1 + A- A2») A3

--6- Ak- 2+ 3 + 2 Ak- 1 + 6+ --2-- Ak+6"Ak+1

= 1"('Y}k) - h" + (1 ~ A)3 (1/' - J;-2)

(2 ,V -2A
2
)(I''' J" ) A

3
(I'If J" )+ 3' + 2 Jk - k-l + (; Jk - HI (2.9)

where tk - 1 < 7Jk < tkH •

If A --7- 1- or A --7- 0+, the above system of equations reduces to the system
(3.1) of ([4] p. 761). Thus, for Asufficiently close to 1 or for Asufficiently small,
in particular, for -t < ,\ < 1, respectively 0 < ,\ < t, the coefficient of Ak is
larger than the sum of the coefficients of Ak- 2, Ak- 1 and Ak+1, respectively the
coefficient of Ak- 1 is larger than the sum of the coefficients of Ak- 2, Ak, Ak+1
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i=1,2, ... ,n

in (2.9). Hence by a reasoning used already in [4], we have for 0« A« t or
i<'\<I,

m;x IAkl < 14w2 (~). (2.10)

Since ep"(x) is linear between joints, it follows easily from (2.10) that

W'(x) - f"(x) I< 15wz (~)

uniformly in [0,1]. This completes the proof of Theorem 1 for ,\ ;> l
The corollary follows easily on observing that ep'(x) - f'(x) vanishes for

at least one TJI in the interior of the interval

e+~=J, i:,\),
by Rolle's theorem. If

[
i+,\-I i+'\]

x E -~n-~··'n '
so that by (2.3),

1
then IX-TJtl <-,

n

lep'(x) - f'(x) I< 1: Wz (~) .

A further integration yields (2.4) for r = O.

3. DEFICIENT CUBIC SPLINE. Since there is no a priori reason for having
only one point of interpolation between two successive joints, it is natural to
inquire into the behaviour ofcubic splines interpolating in two or more points
in each subinterval formed by the joints. This additional constraint naturally
increases the deficiency of the spline curve at the joints. We shall not assume
here that the joints are equispaced; however, we shall restrict ourselves to the
case where the points of interpolation follow the same pattern in each sub
interval. More precisely, if (2.1) is a given subdivision of [0,1], I, m
(0 < m < [< 1) are given real numbers with 1- < [+ m < t, (!Xl> !Xz,.·. !Xn) and
(f31> f3z,···, f3n) are given n-tuples of reals, then there exists a unique I-periodic
cubic spline ep(x) Eel [0,1] with joints (2.1), such that

ep(gt) = !Xl> ep(TJ;} = f3t, i = 1, 2, ..., n,

where

TJI = [Xl + (1 -I) Xl-I'

The proof of this assertion can be carried out along the usual lines [6]. Our
object here is to prove the following convergence theorem.
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THEOREM 2. Let/(x) E CI[O,I] be I-periodic and let cP(x) E C1[0,I] be the
I-periodic cubic spline satisfying

i=I,2, ... ,n. (3.1)

If WI(O) is the modulus of continuity off'(X) , we have for r = 0,1

max Wr)(x) - pr)(X)I~ K(l,m),wl(Ll).LlI-r,
x

where Ll = maxh i and K(/,m) depends on I and m only.
I

For the proof of this theorem we shall need the following

(3.2)

LEMMA. If P(x) is any cubic polynomial in [a,b], ~ = mb + (1 - m)a,
TJ = Ib + (1 - I) a, 0.;;; m < I.;;; 1, then the following identity is valid:

AP(a) = BPm + CP(TJ) + D(b - a)P'(b) +E(b - a)P'(a) (3.3)

where

A = Z3 - m
3

- t<F - m
Z
), B = F(I - t)')

C = Z(~ _) D = F m
Z
(-I + m)

m 2 m, 2'

E = Im(m - I) (21 + 2m - 1m - 3).

This identity is easy to verify.

(3.4)

Proof of Theorem 2. For the sake of brevity, set Ni = cP'(xi), cPi = cP(xl ),

hi = XI - XI_I, i = 1, 2, ... , n. Then using (3.3) first with a = Xi' b = Xi+l,

~ = gi+l> TJ = TJI+1' next with a = Xi, b = Xi-I> 1 -I for I, and 1 - m for m,
and eliminating cPi from the two equations so obtained, we have for i = 1,
2, ... , n,

P(l- t) O(i+1 + mZ(t - m) J31+1 + iF mZ(m -/)hi+1 Ni+1
+ tlm(m - 1)(1 - (2 - 1)(2 - m» hi+! NI - (1 -I)z (I + i) O(i

-(I-m)ZH+m)J3I-!(I-I)Z(1-m)z(l-m)hiNi_1

- -t(1-1)(1 - m)(l- m)(1- (1 + 1)(1 + m»hiNI = 0,

where N i+n = Nt for all i.
A further simplification yields the following system of three-term relations:

-PI NI_ I hi + (pz hi +P3 hi+l) NI - P4 ht+1 Ni+1

2
= 1- m [(l + -t) (1 -1)z O(t - (m + -t) (1 - m)Z J3i

+H-1) F 0(l+1 - (1- - m) mZJ3t+d, i = 1, 2, ... , n, (3.5)
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where

PI = (1- m)2(1-/)2, P2 = (1 - m)(1 -/){(I + /)(1 + m) -I},} (3 6)
P3 = Im{(2 -/)(2 - m) - I}, P4 = [2 m2. .

Since the spline ep interpolates tofat the points gh TJI (i = I,2, ... ,n), we have

fJi = f(TJi) = f(gi) + (1- m)hd'(Pi)

= (Xi + (1- m)hd'(Pi)' gi < Pi < TJi' (3.7)

Using (3.7) in (3.5) to replace fJI+! and (XI' the right side of(3.5) becomes, after
using the mean-value theorem and the Darboux property pf a derivative:

2([2 + 1m + m2-1;1- tm) (fJi - (XI+I)

- 2(1 +-!)(1-1)2 hd'(p,) - 2(t - m)m2hl+J!'(Pi+l)

= ql«1 -/)hi + mh,+I)f'(U,) - [q2 hi + q3 hi+df'(7',+.), (3.8)
where

ql = 31 + 3m - 2[2 - 21m - 2m2, q2 = 2(1 + -!-)(I -/)2,

q3 = 2(t - m)m2, Xi-I < 7'1+1 < XI+ I, Xi-I < Ui < XI+!'

Now, setting B, = N i - f;' (1 <; i <; n), and using (3.8), we have from (3.5) the
following system of equations:

-PI hiBI_I + (P2 hi + P3 h1+ 1) Bi - P4 hl+I B,+!

= ql«1 -/)hi + mhi+1) (f'(UI) -it')
- (q2 hi + q3 hI+1)(f'(7'1+1) - /;')

+ PI Mf;-I - /;') +P4 hl+I(f;+( -it'), i = 1,2, ..., n. (3.9)

Since t < 1+ m < t, P2 - PI = (1 -/)(1 - m)(21 + 2m -- 1) > °and P3 - P4 =

Im(3 - 2/- 2m) > 0, so that the method of [4] can be used to find an upper
bound for max IBil. For, if max IBil = IBjl, then

I I

{(P2 - PI)hj + (P3 - P4)hi+1}IBj !

<;{(ql(I-/) +q2 + PI)hj + (mql +q3 + P4)hi+1}w(Ll).

Since P2 - PI and P3 - P4 are positive numbers depending only on I and m,
it follows that

max IB,I <; KI(l,m)wl(Ll),
I

(3.10)

where K((I,m) is independent of the choice of the joints. This proves that as
Ll --+ 0, the difference ep;' -it' tends to zero uniformly at all joints.

It remains to prove that ep'(x) - f'(x) also approaches zero as Ll tends to
zero. Now, for XI-I <; X <; XI' ep(x) = AI(X) + ¢JI(X), where y = AI(X) is the
straight line through the points (g" (XI) and (Y)h (31)' Hence

¢J1(X) = YI(X - gl) (x - Y)I) (x - 'I),
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with a suitable Yt and 't, so that

Nt- 1 = A/(X) + yJ(2Xt-l - gt -7)i)(Xt- 1 -- 'J + (x t - 1 - gt)(Xt-1 -7)t)]

= A/(X) + Yi[(gi - Xi-I) (l + m)hi + Imh?].

Similarly,

Nt = '\/(x) + Yi[(2 -1- m)h;(xi - 't) + (1-/)(1 - m)h?].
Hence,

(2 -1- m)Nt_) + (l +m) Nt - 2A/(X)

= Yt[(2 -1- m)(1 + m) + Im(2 -1- m) + (1-/)(1 - m)(l + m)]hi
2

= Yt h?[3(l + m) - 2([2 + 1m + m2
)]. (3.11)

Also, from the definition of the Nt's, it follows that

4>'(x) = Ai(x) +3Yi(X - Xt)(x - Xi-a,
with

Thus,
I4>'(x) - Ab)1 ,,;;; 3lYtll(x - Xt)(x - xt-I)I ,,;;; ilyti h?

so that using (3.11), we have

W(x) - A (x)j ,.;:: ~ 1(2 -1- m) Nt-I + (l +m) Nt - 2A/(x)1 (3.12)
t ""'4 13(l+m)-2(f2+lm+m2)j

Since

A;'(X) = f3i - <Xi = !'(B
t
),

7)t - gi

the numerator on the right side of (3.12) is

,,;;; (2 -1- m)IBt_11 + (l + m)IBtl

+ (2 -1- m)I};~) - r(Bt)I+ (I + m)lh' - f'(et)1

,,;;;2(KI(/,m)+ l)wI(L1)·

Therefore, from (3.12), we obtain

W(x) - At(x)1 ,,;;; Kil, m) w)(L1).

Denoting by y = A/(x) the straight line through the points (Xi-l,ft~l) and
(xioft'), and observing that IAt(x) - At*(x) I ,,;;; max IBil for all X in [Xi-I'Xt],

t

we have

IC/>'(x) - !,(X)I ,,;;; W(x) - At(x) I + IAt(x) - At*(x)1 + IAt*(x) - !,(X) I
,,;;; K(l,m)w)(L1).
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4. THE SPECIAL CASE 1+ m = 1. When the points ~l> "Ii of Theorem 2
are symmetrically situated in the interval (Xi-l,Xi)' which corresponds to the
condition 1=1 - m, then the system of equations (3.5) becomes considerably
simpler and a numerical estimate for the constant K(l,m) of (3.2) can be
easily obtained. In fact, in this case K1(I,m) of (3.10) can be replaced by the
constant lei- and some further computation shows that (3.2) holds with K(l,m)
replaced by the constant 16.
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