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1. In the literature on spline interpolation, the interpolatory conditions
are generally imposed at the given mesh-points (joints). In a recent paper,
Subotin [5] has considered the existence and convergence of even degree
splines with equidistant mesh-points which interpolate to given data at the
mid-points of the mesh intervals. Some of these results have been treated
earlier by Schoenberg [3] from a different point of view. The object of the
present paper is to investigate the convergence properties of periodic cubic
splines which interpolate to a given function at one or more inner points of the
given mesh intervals. It is easy to see that if the number of interpolatory
conditions in each mesh interval is more than one (as in our Theorem 2), the
deficiency of the spline (see [/], p. 7) increases. On the other hand, the increase
of deficiency of the spline (which is equivalent to the decrease of differenti-
ability at the joints) is compensated by the increase in smoothness at the
points of interpolation (in fact, we have three non-trivial continuous deriva-
tives at the interpolation points).

Error bounds for interpolatory splines have been considered under various
assumptions on the approximand by Birkhoff and de Boor [2] (see also [6],
[4]). Here we obtain error bounds for cubic splines which interpolate at one
point in each mesh interval (Section 2), and at two points in each mesh interval
(Section 3). For the sake of simplicity, we consider only equidistant joints in
Section 2. In Section 3, this restriction is not needed.

2. Let
O=xs<x,<...<x,=1 2.1

be any subdivision of [0,1]. Set ;= x; — x;_,, and for a given A, 0 <A< 1,
denote ¢, = x;_; -+ Ay, 1 <i<n. For any given n-tuple (o, «,,...,a,) of real
numbers, there exists a unique 1-periodic cubic spline ¢(x) € C2[0,1] with
joints xg, Xy, ..., x, such that ¢(¢,) = o;, 1 < i < n. The existence and uniqueness
of such a spline can be proved by the methods of Ahlberg, Nilson and Walsh
[1].

If the «;’s are the values of a 1-periodic function f(x), we can formulate the

following convergence theorem for equidistant joints.
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TaeOREM 1. Let f(x) € C?[0,1] be 1-periodic, and let ¢(x) € C*[0,1] be the
1-periodic cubic spline with joints x, = i[n, satisfying

¢(i+’\_l)=f(i—+ﬂ), i=1,2,...n, .2)

n n

where 0 <A<} or $ <A< . If w,(8) is the modulus of continuity of f"(x),
then we have

mfx ["(x) — F"(x)] < 15w, (’1—1) . 2.3)

Remark. An analogous result where interpolation takes place between the
joints rather than at the joints is due to Subotin [5]. Similar results from a
different point of view go back much earlier and are due to Schoenberg [3].

An immediate consequence of (2.3) is the following:

CoROLLARY. Under the conditions of Theorem 1, we have forr =0, 1,

max | ¢ (x) — fOX)| < 157" 2w, (’1—1) . 2.9

Proof. 1t is easy to verify that for any cubic polynomial p(x) in an interval
[a, a + ), and for any A, 0 < A < 1, the following identities hold:

pla) + Mip'(a) + (AhT)Z (1 — 2) p'(a)y+ é%h—z pla+h)—pla+A)=0. (2.5
pla+h)—(1—Nhp'(a+h)+ (i%”‘z~2%)‘p"(a +h)
+ (1—% p(@—pla+M)=0. (2.6)
Setting

¢i'=¢'('l')’ 0O<i<mn,
we have on using (2.5) with
i—1 1
a=—, h=-,

and (2.6) with
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¢i_,=~63};Mi—g¢;_1+23—;@—1)Mi_l+ai
B UL I S PV
sothatfori=1,2,..., n we have
n¢§_,—(1_6)\)3M12 A—s;”%i—_wM ——)gMi-{-(oci—oci )R (27)

Since ¢"(x) is linear between joints, we clearly have

b — di1) = 3 M, + M,_y).

Hence (2.7), with i =k and i = k + 1, yields the following four-term relations
for the M,’s:

(1 X 2 N 2N 1M1 +A— )
g M2t (3+ 3 )M““+(’é+ 3 8

= 2[tk-l: tk} tk-}-l ;f]’ k = 1’ 2, ceo B, (2'8)
where [a,b,c; f] denotes the usual divided difference of fat a, b, ¢,

My

)Mk+

[ +A—1
tt=l+n , and M, =M,

for all i.
Setting

” " k
=1 (5) and A= b

we have from (2.8) after some simplification, for k=1,2,...,n

(1 — X3 2 B-2x L AL+A=N)
3 Ak—2+(§+T)Ak-1 + (6+ 3 )Ak 6 Ay
=rm -+ e - p
3 2
HEE5 )(ﬁ:’ S REATC AR @9)

where t,_; <, < iy

If A > 1— or A — 0+, the above system of equations reduces to the system
(3.1) of ([4] p. 761). Thus, for A sufficiently close to 1 or for A sufficiently small,
in particular, for $ < A< 1, respectively 0 < A <4, the coefficient of 4, is
larger than the sum of the coefficients of 4,_,, 4,_; and 4,,,, respectively the
coefficient of A4,._, is larger than the sum of the coefficients of 4,_,, 4y, Ay
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in (2.9). Hence by a reasoning used already in [4], we have for 0 <A<} or
(<A<,

n

max |4, < 14w, (1) (2.10)
k

Since ¢"(x) is linear between joints, it follows easily from (2.10) that

16"() — ()] < 15w, (1)

uniformly in [0,1]. This completes the proof of Theorem 1 for A > %.
The corollary follows easily on observing that ¢'(x) —f'(x) vanishes for
at least one 7, in the interior of the interval

(i)‘i,ﬂ), i=1,2,...n
n n

by Rolle’s theorem. If
[z‘ +A-11i i}]

1
A h | <
PR , then |x 7],|<n,
so that by (2.3),
|¢'(x) —f ()| B (1
x < el ).

A further integration yields (2.4) for r =0.

3. DerICIENT CuUBIC SPLINE. Since there is no a priori reason for having
only one point of interpolation between two successive joints, it is natural to
inquire into the behaviour of cubic splines interpolating in two or more points
in each subinterval formed by the joints. This additional constraint naturally
increases the deficiency of the spline curve at the joints. We shall not assume
here that the joints are equispaced ; however, we shall restrict ourselves to the
case where the points of interpolation follow the same pattern in each sub-
interval. More precisely, if (2.1) is a given subdivision of [0,1], /, m
(0 <m <1< 1) are given real numbers with { <!+ m <32, (e, %,...2,) and
(Bis Bas- - -» Bn) are given n-tuples of reals, then there exists a unique 1-periodic
cubic spline ¢(x) € C'[0,1] with joints (2.1), such that

‘IS(fi) = Ay, ‘ﬁ(ﬂi) = ,Bi’ i=1,2,..,n,
where

& =mx;+ (1 —m)x,_y, m=Ix;+(1-Dx_,.

The proof of this assertion can be carried out along the usual lines [6]. Our
object here is to prove the following convergence theorem.
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THEOREM 2. Let f(x) € C'[0,1] be 1-periodic and let ¢(x) € C'[0,1] be the
V-periodic cubic spline satisfying
Pé)=fE)=u, S =S(p)=hi, i=12,..,0. (31
If w,(8) is the modulus of continuity of f'(x), we have for r =0, 1
max [¢"(x) — fOX)| < K(l,m).w (d). 4", 3.2)

where A4 = max h; and K(I,m) depends on | and m only.
i

For the proof of this theorem we shall need the following

LemMA. If P(x) is any cubic polynomial in [a,b], £ =mb+ (1 —m)a,
n=Ib+ {1 —Da, 0<m<I<1, then the following identity is valid:

AP(a)=BP(¢)+ CP(m)+ D(b—a)P'(b)+ E(b—a)P'(a) (3.3)
where
A=D—m?-3(?—m?), B=1%(-3),
Pm*(—1+m)
———
E=Im(m—10)Q21+2m —Im —3).

C=m3-m), D= (3.4)

This identity is easy to verify.

Proof of Theorem 2. For the sake of brevity, set N; = ¢'(x), ¢: = d(x,),
hy=x;,—x;_,, i=1, 2, ..., n. Then using (3.3) first with a=x;, b =x;,,,
E=E101, N =114, next with a=x,, b=x;_, 1 — I for /, and 1 — m for m,
and eliminating ¢, from the two equations so obtained, we have for i=1,
2, ..., 1,

P~ oy +m*G —m) By + 312 m*(m — ) by Ny
+3mm DA -2 -DQ2-m)h N —(1 =D+ D
—(1=mPGE+mpB -3 -D*A—mpP—mh N,
31 -DA-m{I-mA-L+DHA+m)h N, =0,
where N, = N, for all i.
A further simplification yields the following system of three-term relations:

P\ Nyt b+ (P2 by + p3hi)) Ny — pahiy Niyy
2
=7_—m[(l+%)(1 — Doy —(m+H (1 —m?B;

+(—%—_l)12ai+l—— %’m)mzﬁi-i-l]’ l=1’ 25-'-7 n, (3'5)
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where
pi=1-mPQA-=1P,  p=1-mA-DH{1+H({+m)—1}
pi=m{@-0NQ2-m -1}, py=0Im
Since the spline ¢ interpolates to f at the points &, n; (i=1,2,...,#), we have
Bi=f(n)=f()+ (I —m)h f'(p)
=aq+(-mhf'p), &<pi<m 3.7
Using (3.7) in (3.5) to replace 8,,, and «;, the right side of (3.5) becomes, after
using the mean-value theorem and the Darboux property pf a derivative:
202 + Im + m? — 31— 3m) (B, — i4y)
=20+DA=D*h f(p) = 2G —m)m* hyy, f'(pisr)
=q((1 =D hi +mhy ) f'(0) — @20 + @3 Ry 1 [/ (7i), - (3.8)

(3.6)

where
gy =314+3m =202 -2lm—2m?, q=2(0+HA-1)?

g5 =2G —mym?, X1 < Tig) < Xiyys Xi-) <Oy < Xipyge
Now, setting B; = N, — f;’ (1 < i < n), and using (3.8), we have from (3.5) the
following system of equations:
~pyhi Bioy + (P2 by + p3hys) Bi—pahisy Biyy
=q,((1 = D by + mhy ) (f'(00) = 1))

—(@2hi + g3 by ) (f (Ti40) = i)

+p (o =)+ pabin (i — ) i=1,2,..,n. (39)
Since } <l+m<%, p—p=(1-D(1-mQl+2m-—-1)>0 and p; —p, =
Im(3 — 2] — 2m) > 0, so that the method of [4] can be used to find an upper
bound for max | By|. For, if max [B;| = |By], then

{(p2—P) by +(p3s—Ps) h,—+1}|Bj|
<{@(1 =) +q+p) b+ (mq, + g3+ p) by} o, (4).

Since p, — p; and p; — p4 are positive numbers depending only on / and m,
it follows that
max |B,| < Ky, m) w,(4), (3.10)
i

where K,(/,m) is independent of the choice of the joints. This proves that as
4 — 0, the difference ¢," — f;’ tends to zero uniformly at all joints.

It remains to prove that ¢'(x) —f'(x) also approaches zero as 4 tends to
zero. Now, for x,_; <x<x;, ¢(x) =A(x)+ ¢,(x), where y=A(x) is the
straight line through the points (§;, «;) and (,, B;). Hence

Pix) =yilx — &) (x — ) (x — L)),
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with a suitable v, and {;, so that

N = )\t'(x) + o 2xy = & =) (o — §) A (o — ‘:Ci) (x-1 — m3)]
=X'() + yil — xi-) U+ m) by + Imh?).

Similarly,
Ny =X'(xX) + @ —1—m)hy(x; — ) + (1 = D (1 — m) h2).

Hence,
(2 _ l— m)Ni__l + (l+ m) Ni - 2Ail(x)

=yl2—I-my(I+m)+ImQ2—1—m)+ 1 —-D1 —m)( + m)]h?

=y, h2[3( + m) — 2(1* + Im + m?)]. (3.11)
Also, from the definition of the N/’s, it follows that

¢'(x) = Af(x) + Iyi(x — %) (X — x1-1),

with

X —X X — X
+ N, .
hy Yol

Ax) =N,
Thus,
[6'(x) — A,(x)] < 3|yul|(x — %) (x — x1-0)| < 3yl AP
so that using (3.11), we have

3[(2 —m) Ny + ([ +m) N, — 2/ (x)]
46 — A <7 [3(1+m)—2(12+1m+m2)| '

(3.12)
Since

A(x)—ﬁ‘ Bosr6),  ti<ti<n,

the numerator on the right side of (3.12) is

<@ —-1-m)|B;_\| + (I +m)|B

+Q—I-m|fil, =" @) + I+ m)|f; — 1)

< 2K,(l,m) + D w,(4).

Therefore, from (3.12), we obtain
|$'(x) — 4:(x)| < Ka(ly m) w(4).
Denoting by y = A4;*(x) the straight line through the points (x,_;, fi_;) and
(x, /1), and observing that |A4,(x) — A;*(x)] < max|B;| for all x in [x,_;,x,],
i

we have

[¢'(x) —f' @) < |$'() — A + [A4x) = A*X)| + | 4*6x) = f ()|
< K(l,m) w,(4).
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4. THE SPECIAL CASE / + m = 1. When the points £, , of Theorem 2
are symmetrically situated in the interval (x;_,,x;), which corresponds to the
condition / =1 — m, then the system of equations (3.5) becomes considerably
simpler and a numerical estimate for the constant K(/,m) of (3.2) can be
easily obtained. In fact, in this case K(/,m) of (3.10) can be replaced by the
constant £ and some further computation shows that (3.2) holds with K(/,m)
replaced by the constant 16.
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